
The amount of data sent in each server response can add
significant latency to your application, especially in areas where
bandwidth is constrained. In addition to the network cost of the
actual bytes transmitted, there is also a penalty incurred for
crossing an IP packet boundary. (The maximum packet size, or
Maximum Transmission Unit (MTU), is 1500 bytes on an Ethernet
network, but varies on other types of networks.) Unfortunately,
since it's difficult to know which bytes will cross a packet
boundary, the best practice is to simply reduce the number of
packets your server transmits, and strive to keep them under
1500 bytes wherever possible.

Minimizing the payload size of both dynamic and static resources
can reduce network latency significantly. In addition, for scripts
that are cached, cutting down their byte size speeds up the time
the browser takes to parse and execute code needed to render
the page.

Enable compression1.
Remove unused CSS2.
Minify JavaScript3.
Minify CSS4.
Minify HTML5.
Defer loading of JavaScript6.
Optimize images7.
Serve scaled images8.
Serve resources from a consistent URL9.

Overview

Compressing resources with gzip or deflate can reduce the
number of bytes sent over the network.

Details

Most modern browsers support data compression for HTML, CSS,
and JavaScript files. This allows content to be sent over the
network in more compact form and can result in a dramatic
reduction in download time.

Many web servers can compress files in gzip format before
sending them for download, either by calling a third-party module
or using built-in routines. To enable compression, configure your
web server to set the Content-Encoding header to gzip format for
all compressible resources. You can also use deflate, which uses
the same compression algorithms, but it is not widely used, so

Minimize payload size http://code.google.com/speed/page-speed/docs/payload...

1 of 9 03-Jul-11 10:39 AM

we recommend gzip. If streaming compression imposes too
much load on your server, you can usually configure it to
pre-compress files and cache them for future downloading.

Note that gzipping is only beneficial for larger resources. Due to
the overhead and latency of compression and decompression,
you should only gzip files above a certain size threshold; we
recommend a minimum range between 150 and 1000 bytes.
Gzipping files below 150 bytes can actually make them larger.

Recommendations

Write your web page content to make compression most
effective.

To ensure that your content compresses well, do the
following:

Ensure consistency in HTML and CSS code. To achieve
consistency:

Specify CSS key-value pairs in the same order
where possible, i.e. alphabetize them.
Specify HTML attributes in the same order , i.e.
alphabetize them. Put href first for links (since it is
most common), then alphabetize the rest. For
example, on Google's search results page, when
HTML attributes were alphabetized, a 1.5%
reduction in the size of the gzipped output
resulted.
Use consistent casing, i.e. use lowercase
wherever possible.
Use consistent quoting for HTML tag attributes,
i.e. always single quote, always double quote, or
no quoting at all where possible.

Minify JavaScript and CSS. Minifying JavaScript and
CSS can enhance compression both for external JS and
CSS files and for HTML pages containing inlined JS code
and style blocks.

Don't use gzip for image or other binary files.
Image file formats supported by the web, as well as videos,
PDFs and other binary formats, are already compressed;
using gzip on them won't provide any additional benefit, and
can actually make them larger. To compress images, see
Optimize images.

Additional resources

Back to top

Overview

Removing or deferring style rules that are not used by a

Minimize payload size http://code.google.com/speed/page-speed/docs/payload...

2 of 9 03-Jul-11 10:39 AM

document avoid downloads unnecessary bytes and allow the
browser to start rendering sooner.

Details

Before a browser can begin to render a web page, it must
download and parse any stylesheets that are required to lay out
the page. Even if a stylesheet is in an external file that is cached,
rendering is blocked until the browser loads the stylesheet from
disk. In addition, once the stylesheet is loaded, the browser's
CSS engine has to evaluate every rule contained in the file to see
if the rule applies to the current page. Often, many web sites
reuse the same external CSS file for all of their pages, even if
many of the rules defined in it don't apply to the current page.

The best way to minimize the latency caused by stylesheet
loading and rendering time is to cut down on the CSS footprint;
an obvious way to do this is to remove or defer CSS rules that
aren't actually used by the current page.

Tip: When you run Page Speed against a page referencing CSS
files, it identifies all CSS rules that don't apply to that page.

Recommendations

Remove any inline style blocks containing CSS that is not
used by the current page.
Minify CSS.
If your site uses external CSS files shared among multiple
pages, consider splitting them into smaller files containing
rules for specific pages.
If a page references style rules that are not needed right
at startup, put them in a separate .css file and defer loading
of the file until the onload event is fired.
If you use JavaScript to generate styles, be sure that those
functions aren't called from pages that don't use those
styles. This may require some refactoring of JS code.

Back to top

Overview

Compacting JavaScript code can save many bytes of data and
speed up downloading, parsing, and execution time.

Details

"Minifying" code refers to eliminating unnecessary bytes, such as
extra spaces, line breaks, and indentation. Keeping JavaScript
code compact has a number of benefits. First, for inline

Minimize payload size http://code.google.com/speed/page-speed/docs/payload...

3 of 9 03-Jul-11 10:39 AM

JavaScript and external files that you don't want cached, the
smaller file size reduces the network latency incurred each time
the page is downloaded. Secondly, minification can further
enhance compression of external JS files and of HTML files in
which the JS code is inlined. Thirdly, smaller files can be loaded
and run more quickly by web browsers.

Several tools are freely available to minify JavaScript, including
the Closure Compiler, JSMin or the YUI Compressor. You can
create a build process that uses these tools to minify and rename
the development files and save them to a production directory.
We recommend minifying any JS files that are 4096 bytes or
larger in size. You should see a benefit for any file that can be
reduced by 25 bytes or more (less than this will not result in any
appreciable performance gain).

Tip: When you run Page Speed against a page referencing JS
files, it automatically runs the Closure Compiler (if available) and
JSMin (for inline blocks and if the compiler is not available) on the
files and saves the minified output to a configurable directory.

Back to top

Overview

Compacting CSS code can save many bytes of data and speed up
downloading, parsing, and execution time.

Details

Minifying CSS has the same benefits as those for minifying JS:
reducing network latency, enhancing compression, and faster
browser loading and execution.

Several tools are freely available to minify JavaScript, including
the YUI Compressor and cssmin.js.

Tip: When you run Page Speed against a page referencing CSS
files, it automatically runs cssmin.js on the files and saves the
minified output to a configurable directory.

Back to top

Overview

Compacting HTML code, including any inline JavaScript and CSS
contained in it, can save many bytes of data and speed up
downloading, parsing, and execution time.

Minimize payload size http://code.google.com/speed/page-speed/docs/payload...

4 of 9 03-Jul-11 10:39 AM

Details

Minifying HTML has the same benefits as those for minifying CSS
and JS: reducing network latency, enhancing compression, and
faster browser loading and execution. Moreover, HTML frequently
contains inline JS code (in <script> tags) and inline CSS (in
<style> tags), so it is useful to minify these as well.

Note: This rule is experimental and is currently focused on size
reduction rather than strict HTML well-formedness. Future
versions of the rule will also take into account correctness. For
details on the current behavior, see the Page Speed wiki.

Tip: When you run Page Speed against a page referencing HTML
files, it automatically runs the Page Speed HTML compactor
(which will in turn apply JSMin and cssmin.js to any inline
JavaScript and CSS) on the files and saves the minified output to
a configurable directory.

Back to top

Overview

Deferring loading of JavaScript functions that are not called at
startup reduces the initial download size, allowing other
resources to be downloaded in parallel, and speeding up
execution and rendering time.

Details

Like stylesheets, scripts must be downloaded, parsed, and
executed before the browser can begin to render a web page.
Again, even if a script is contained in an external file that is
cached, processing of all elements below the script is blocked
until the browser loads the code from disk and executes it.
However, for some browsers, the situation is worse than for
stylesheets: while JavaScript is being processed, the browser
blocks all other resources from being downloaded. For AJAX-type
applications that use many bytes of JavaScript code, this can add
considerable latency.

For many script-intensive applications, the bulk of the JavaScript
code handles user-initiated events, such as mouse-clicking and
dragging, form entry and submission, hidden elements
expansion, and so on. All of these user-triggered events occur
after the page is loaded and the onload event is triggered.
Therefore, much of the delay in the "critical path" (the time to
load the main page at startup) could be avoided by deferring the
loading of the JavaScript until it's actually needed. While this
"lazy" method of loading doesn't reduce the total JS payload, it

Minimize payload size http://code.google.com/speed/page-speed/docs/payload...

5 of 9 03-Jul-11 10:39 AM

can significantly reduce the number of bytes needed to load the
initial state of the page, and allows the remaining bytes to be
loaded asynchronously in the background.

To use this technique, you should first identify all of the
JavaScript functions that are not actually used by the document
before the onload event. For any file containing more than 25
uncalled functions, move all of those functions to a separate,
external JS file. This may require some refactoring of your code
to work around dependencies between files. (For files containing
fewer than 25 uncalled functions, it's not worth the effort of
refactoring.)

Then, you insert a JavaScript event listener in the head of the
containing document that forces the external file to be loaded
after the onload event. You can do this by any of the usual
scripting means, but we recommend a very simple scripted DOM
element (to avoid cross-browser and same-domain policy
issues). Here's an example (where "deferredfunctions.js"
contains the functions to be lazily loaded):

<script type="text/javascript">

// Add a script element as a child of the body
function downloadJSAtOnload() {
var element = document.createElement("script");
element.src = "deferredfunctions.js";
document.body.appendChild(element);
}

// Check for browser support of event handling capability
if (window.addEventListener)
window.addEventListener("load", downloadJSAtOnload, false);
else if (window.attachEvent)
window.attachEvent("onload", downloadJSAtOnload);
else window.onload = downloadJSAtOnload;

</script>

Back to top

Overview

Properly formatting and compressing images can save many
bytes of data.

Details

Images saved from programs like Fireworks can contain kilobytes
of extra comments, and use too many colors, even though a
reduction in the color palette may not perceptibly reduce image
quality. Improperly optimized images can take up more space
than they need to; for users on slow connections, it is especially
important to keep image sizes to a minimum.

Minimize payload size http://code.google.com/speed/page-speed/docs/payload...

6 of 9 03-Jul-11 10:39 AM

You should perform both basic and advanced optimization on all
images. Basic optimization includes cropping unnecessary space,
reducing color depth to the lowest acceptable level, removing
image comments, and saving the image to an appropriate
format. You can perform basic optimization with any image
editing program, such as GIMP. Advanced optimization involves
further (lossless) compression of JPEG and PNG files. You should
see a benefit for any image file that can be reduced by 25 bytes
or more (less than this will not result in any appreciable
performance gain).

Recommendations

Choose an appropriate image file format.
The type of an image can have a drastic impact on the file
size. Use these guidelines:

PNGs are almost always superior to GIFs and are
usually the best choice. IE 4.0b1+, Mac IE 5.0+, Opera
3.51+ and Netscape 4.04+ as well as all versions of
Safari and Firefox fully support PNG, including
transparency. IE versions 4 to 6 don't support alpha
channel transparency (partial transparency) but they
support 256-color-or-less PNGs with 1-bit transparency
(the same that is supported for GIFs). IE 7 and 8
support alpha transparent PNGs except when an alpha
opacity filter is applied to the element. You can
generate or convert suitable PNGs with GIMP by using
"Indexed" rather than "RGB" mode. If you must
maintain compatibility with 3.x-level browsers, serve
an alternate GIF to those browsers.
Use GIFs for very small or simple graphics (e.g. less
than 10x10 pixels, or a color palette of less than 3
colors) and for images which contain animation. If you
think an image might compress better as a GIF, try it
as a PNG and a GIF and pick the smaller.
Use JPGs for all photographic-style images.
Do not use BMPs or TIFFs.

Use an image compressor.
Several tools are available that perform further, lossless
compression on JPEG and PNG files, with no effect on image
quality. For JPEG, we recommend jpegtran or jpegoptim
(available on Linux only; run with the --strip-all option).
For PNG, we recommend OptiPNG or PNGOUT.

Tip: When you run Page Speed against a page referencing
JPEG and PNG files, it automatically compresses the files
and saves the output to a configurable directory.

Back to top

Minimize payload size http://code.google.com/speed/page-speed/docs/payload...

7 of 9 03-Jul-11 10:39 AM

Overview

Properly sizing images can save many bytes of data.

Details

Sometimes you may want to display the same image in various
sizes, so you will serve a single image resource and use HTML or
CSS in the containing page to scale it. For example, you may
have a 10 x 10 thumbnail version of a larger 250 x 250 image,
and rather than forcing the user to download two separate files,
you use markup to resize the thumbnail version. This makes
sense if the actual image size matches at least one — the largest
— of the instances in the page, in this case 250 x 250 pixels.
However, if you serve an image that is larger than the
dimensions used in all of the markup instances, you are sending
unnecessary bytes over the wire. You should use an image editor
to scale images to match the largest size needed in your page,
and make sure that you specify those dimensions in the page as
well.

Back to top

Overview

It's important to serve a resource from a unique URL, to
eliminate duplicate download bytes and additional RTTs.

Details

Sometimes it's necessary to reference the same resource from
multiple places in a page — images are a typical example. Even
more likely is that you share the same resources across multiple
pages in a site such as .css and .js files. If your pages do need to
include the same resource, the resource should always be served
from a consistent URL. Ensuring that one resource is always
assigned a single URL has a number of benefits. It reduces the
overall payload size, as the browser does not need to download
additional copies of the same bytes. Also, most browsers will not
issue more than one HTTP request for a single URL in one
session, whether or not the resource is cacheable, so you also
save additional round-trip times. It's especially important to
ensure that the same resource is not served from a different
hostname, to avoid the performance penalty of additional DNS
lookups.

Note that a relative URL and an absolute URL are consistent if the
hostname of the absolute URL matches that of the containing
document. For example, if the main page at www.example.com
references resource /images/example.gif and

Minimize payload size http://code.google.com/speed/page-speed/docs/payload...

8 of 9 03-Jul-11 10:39 AM

www.example.com/images/example.gif, the URLs are consistent.
However, if that page references /images/example.gif and
mysite.example.com/images/example.gif, these URLs are not
consistent.

Recommendations

Serve shared resources from a consistent URL across all pages in
a site.

For resources that are shared across multiple pages, make
sure that each reference to the same resource uses an
identical URL. If a resource is shared by multiple pages/sites
that link to each other, but are hosted on different domains
or hostnames, it's better to serve the file from a single
hostname than to re-serve it from the hostname of each
parent document. In this case, the caching benefits may
outweigh the DNS lookup overhead. For example, if both
mysite.example.com and yoursite.example.com use the
same JS file, and mysite.example.com links to
yoursite.example.com (which will require a DNS lookup
anyway), it makes sense to just serve the JS file from
mysite.example.com. In this way, the file is likely to already
be in the browser cache when the user goes to
yoursite.example.com.

Back to top

Excerpted from Minimize payload size
http://code.google.com/speed/page-speed/docs/payload.html

Sign Up & Read Comfortably—Anytime, Anywhere

A subscription to Readability offers great features for mobile reading, saving
articles for later and supporting the writers you enjoy. Learn More »

Minimize payload size http://code.google.com/speed/page-speed/docs/payload...

9 of 9 03-Jul-11 10:39 AM

